Changing of the Guard

I more excited than other times for a talk I will deliver next week. When invited, I read the list of speakers and I noticed so many names of people whose science I follow very closely. This time something is different though. I read their papers since I am a student, papers they published perhaps when they were students or young postdocs, in fact many of them are my generation. I grew with their science as if they were well-established academics as I never paid attention to affiliations or titles. Some of those I had recognised early in my career disappeared from the field or academia, others are fully established by now. This made me thing about my attitude towards generational change… a great contradiction of thoughts.

Missing the Old Guard. Several scientists I really respect have retired or are about to. I have been privileged to meet so many, particularly in the area of biochemical/biophysical imaging. Scientists who contributed so much, inspiring figures who shaped contemporary science, often without hype or even recognition in the broader community. Wait, am I missing the Old Guard? This feeling contrast so much with another one. In time, old ideas become an obstacle to progress and a generational change is desirable. You might indeed know the popular concept that ‘science advance one funeral at a time’. I do think there is an element of truth in it. So, why do I have such profound contradiction in my feelings?

Loving the New Guard. I am active in the area of biophotonics since an undergrad student, and having swapped discipline a few times, it is simpler for me to use microscopy as an example. The super-resolution revolution has been inspirational although I have observed it from the outside. In a few years, a new generation of stars begun to shine and a constellation of younger scientists who broke with the past was born alongside. Also in biochemical imaging I see great changes, the consolidation of certain ideas that once were considered heresy or simply very very niche. And yes, this get me rather excited. Wait, do I really love the New Guard? I see so much I do not like in science, and this is not just something imposed or inherited by previous generations. There are so many colleagues* with whom I might disagree about science and often on how Academia should be run. Disagreement is ok but sometime this is a much more profound divide.

OK, I got it wrong. Today, I have suddenly realised how wrong I was in interpreting my own feelings about generational change in Academia. While the majority of us would agree that generational change is necessary to avoid science stagnating, perhaps we do not really understand why**.

I love challenging established ideas on the basis of logic and experiment, I love discussing alternative interpretations that are not mainstream (but still scientific!), I love risk-taking in science (not in life although sometimes it is difficult to keep them separate), I love intellectual change (not so much change in my everyday life). Generational change might help the things I like to emerge but old generations do not have exclusivity in being dogmatic or risk-adverse, indeed those I admire are not. The issue is that too often also the younger generations accept dogmas (not just critically incorporating established theories and models in their thinking), they would guard an old ‘truth’ no matter what. But when they lose their authority of reference because of generational change, somehow their confidence or power is weakened, leaving space for positive change.

Hence, I now realise I am merely recognising a new generation of scientists with whom I might share a vision and I am excited that new people now replace those who retire for whom I had the same affinity and respect. Generational divides are much less important than an open attitude to change.

So, perhaps, I do not like guards in science at all because in science the fewer cages or palaces we have the better it is.

And after this lucubration, I will thoroughly enjoy my next talk in any case 🙂


* I use the term colleague very loosely to refer scientists in related fields.

** I just had a glance to this paper by Azoulay et al., interesting concepts

Reviewer 3 | A semi-serious discussion

I guess that if you landed here, you know what I am referring to, but let me clarify the subject of this post for the benefit of the youngest scientists. During peer-review, we get good and bad feedback, either deserved or not. We can then respond and revise our work. However, it is not rare to get the reports from the mythological reviewer 3 (also known by a different number), one that dismisses your hard work in ways that you will find particularly unfair and difficult – if possible at all – to rebut. There are various flavours of Reviewer 3, but common traits – not necessarily all present in an individual report – might be the condescending tone, vague unreferenced criticisms, the request of impossible experiments, a deep misunderstanding of the manuscript, accusations of various type. The important aspect of referee 3 is that, generally, responding to their critique is either factually impossible or would not improve the quality of your work. Of course, there is a lot of subjective interpretation here, and some of referee 3’s suggestions might be proper, or some report that at first glance are good (negative but well done) might be written by reviewer 3 in incognito. In any case, most scientists agree that Reviewer 3 does exist and, some of us asked for an independent assessment of a controversial refereeing report, might even know the identity of some of them, however ever-shifting they are.


Why Reviewer 3? Well, this is very anecdotal and indeed people might do the same ‘joke’ but changing the numbering. The argumentation I am going to elaborate on (I beg you, Reviewer 3, if you are reading, please remember this is not a completely serious discussion), does not depend on precise numbers, certainly not by the cardinality of the referee. In any profession, there are very skilled and bad professionals; this applies also to the academic world, of course. However, referee 3 does not have to be particularly bad scientifically, they might be the smartest of all, but for the scope of the refereeing process, referee 3 is doing this particular job and at that particular time, particularly badly, perhaps for lack of time, hubris, a particular emotional state, ignorance or for a genuine misunderstanding: it does not matter. It exists. Then, let’s take the anecdotal report of Referee 3, for a moment, at face value.


Let’s say that each time an editor nominates a reviewer, it is like the toss of an unfair coin (i.e., the probability of heads is different from the probability of tails) – either we get a Referee 3 or we do not. The probability to get at least one referee 3, is then the complement of the probability to not get one at all, i.e. p1=1-(1-p0)^n, with n the number of referees nominated by an editor. Which is the probability p0 for referee to be referee 3?

There might be some data out there, but as data is relatively unimportant both to make my point and to reviewer 3, I will assume that as Reviewer 3 is often called Reviewer… THREE, it is a frequent occurrence to observe one out of three referees been, well you got it, referee three. Then, after ‘careful consideration’, I assumed that one out of three is the most frequent occurrence.  The mode of a binomial distribution is floor((n+1)p0)=1 or ceil((n+1)p0-1=1. We can thus infer that between 1/4 to 1/2 of all referees could provide a Reviewer3-like  response. Hence, which is the probability to get at least one Referee 3 for your submission? Well, although a rare occurrence, if the editor asks the opinion of just one expert (perhaps as a preliminary inquiry) this probability is somewhere between 1/4 and 1/2, of course, identical to p0. For two referees, we will get a 43-75% probability and for three (the most common case), almost a 60-90% probability. Therefore, getting a Referee 3 report might be a rather obvious outcome of the peer-review process.

Now, let’s do another outrageous assumption. Let’s assume that also the editor, when handling a manuscript, could make the same mistakes as a referee 3 and that the journal has a very high bar for a manuscript to be accepted, i.e. any substantial negative feedback causes a rejection. In this case, the probability that the Referee 3 syndrome might negatively affect your submission is between 70-95%. Unrealistic? Maybe.


Now that several weeks passed, the referees’ reports are back in the hand of the editor. This is a very complex stage where so many objective and subjective factors might change how referee 3 is handled.

One possible outcome is that you get two Referee 3s… a rare outcome… isn’t it? If three referees have sent reports in, the probability to get at least two Referee 3s is actually between 15-50% Let’s say that – on average – a quarter of papers could be rejected because of Referee 3s, as if you get at least two of them any editor would, legitimately, dismiss the idea that those are ‘bad’ referees.

Let’s assume now you got just one referee 3 report. Again, with no intention to be accurate, these are the possible outcomes I can think about:

  1. The Editor considers Referee 3’s points valid and the paper is rejected. Unexperienced authors will give up this submission at this stage, address any valid point raised during the refereeing and move to a second journal. Keep in mind now, that at the next journal, you will get the same probability of getting a Referee 3. However, if Referees one and two were positive with a few criticisms that could be addressed with new data, the experienced author would appeal. Until recently, I did not realize that Editors are quite open to this option assuming they find the manuscript interesting and that you get only a single problematic referee. Unfortunately, journals have mechanisms to discourage this path. However, if you can disregard emotions and humbly reassess your work on the basis of the Referees’ critique and you still find that the main issue is a Referee 3, engage – positively – the Editor. In most cases, you will find nice people trying to help out.
  2. The Editor considers Referee 3’s points invalid and in one way or another, you will be allowed to address only the solid scientific point of Referee 3. It is very rare this will be written to you explicitly. I still find difficult to handle this situation. In most cases, this is the more likely situation you will get published even with a Referee 3 in the cohorts of referees. My suggestion is to speak with a senior colleague to decide how to proceed, or again to engage in a polite and proactive way the Editor.
  3. The Editor considers Referee 3’s points invalid and asks for the opinion of Referee 4. This is the most sympathetic and proactive response that an Editor can have. However, this is also a situation that does not protect you from Referee 3, as the shapeshifting nature of Referee 3 might make them reappear with a differently numbered T-shirt. You will have between 25-50% to get another Referee 3 and being rejected not on merit. On a positive side, you might have up to 75% probability to replace a Referee 3 with a more objective peer.


Which is the point of this post? As I stated in the title, this is not a serious and quantitative analysis of peer-review. But I wished to address with outrageous simplifications a basic issue. Does the attitude of Referee 3 play an important role in peer-review? There are several reports showing how peer-review, despite its importance and the several mechanisms to establish a formal and objective process, give rise to a high degree of randomness in the outcome. Here, I just wished to point out that the probability to get a random and unfair report might be high. I leave to others the study of how high this value really is. However, while very experienced Editors and Authors might know how to handle the situation, there are two issues that concern me:

  1. We are accustomed to harsh criticism. Often, a solid scientific debate is confused with been tough, and assertiveness is confused with freedom to not be polite. Who manage peer-review, academic or professional Editors, or managers in funding agencies, might consider this the natural and obvious rules of the game. Being a scientist has become something of a high-pressure job and it seems everyone has to accept this. Most of us are good and well-intentioned people, but the gears of this heavy machinery that is science are difficult to change, at least while the machine is in action.
  2. The authors, or grant applicants, should have a very balanced approach. On the one hand, they should always make an effort to learn from criticism, even unfair criticism. This is a bit tricky with Referee 3. However, we always have to dissect Referee 3 to identify any useful critique. This is the trivial advise, trivial as it should be obvious. There is something more about this, that if you are a younger scientist with no proper mentoring, you might not know. Referee 3s can have a huge psychological impact on you. I’ve seen this happening to group leaders, and I have experienced this on my own.

*** UPDATE ***

After the publication of this blog-post, Reviewer 3 contacted me privately with the following message.

  1. The assumptions the author does are all wrong and WordPress should not have allowed the submission of this article
  2. The conclusions of the authors are clearly impossible as they conflict with a large body of literature
  3. The authors do not cite any literature, but particularly the papers I published in 1965 that clearly and unequivocally demonstrate the opposite finding or the same findings.
  4. The article is written in English, Latin would be the preferred choice for this field
  5. Even if the authors could address these shortcomings with a major revision, this article should not be even posted on LinkedIn
  6. Moreover, the article is poorly written, for instance, for instance ‘my own’ is not Korektly PhrammatiKalleee

*** UPDATE 2 ***

Hi Donald,

yes, that is sarcasm… not, you know…

Take care,


Managing risk in the lab at the times of coronavirus

In the UK, we are waiting for good news to reopen our laboratories. Well, not ‘waiting’ but getting ready. It might be in two weeks or two months but we have to be ready because if we will be ‘back to normal’, we will have new outbreaks. In science, we are lucky as we are already trained to manage risk. However, most scientists in the UK have a conflictual relationship with health and safety procedures that are often perceived (probably rightly) as overly bureaucratic and can drive people away from good practice. I am lucky as I deal with wonderful people both locally at the Cancer Unit and centrally at University on the regard to safety, at least in those areas I have responsibilities.

In my opinion, this is the moment to restructure how we handle safety. On the one hand, formal risk assessment is very important to identify the source of hazards. It is easy to imagine we can work safely but there are some topics that are very tricky. For example, we are discussing how to deal with fire doors… we can’t keep them wedged open because of fire safety but it would be better to not close them to avoid touching surfaces unnecessarily. There are perhaps solutions that avoid any risk, for example providing hand sanitizers on either side of the door or reverting previous rules and enforce the use of gloves in any area of the labs, or install automatic (fire) doors as soon as possible. What about air conditioning? We need it in a modern building with sensitive equipment but should we do any change? Are they safe? What about cell culture? The other day I joked about infected cell cultures in CL1 laboratories? Wait… it was a joke but then – out of curiosity – I realized that coronaviruses, this included, can propagate in several mammalian cell lines (they express ACE2 and most of them are not killed by the virus). Is this an issue? I assume it is not as it is unlikely we contaminate cultures (we work in aseptic conditions) and cells do not generate aerosols we can breathe. But I wished to mention this just to make a point: it is worth thinking deeply about how work will be when we return in the laboratories to identify possible issues, without paranoia and without panicking, but proactively and scientifically.

However, paperwork never protected us. It helps to identify issues and to protect us legally. There is a set of rules that have been gradually abandoned in favour of PPEs and engineering measures to manage risk and I believe we have to retrain people using those rules. It will be impossible to make the world 100% safe from coronavirus, certainly in the short term. We can, however, manage risk by changing behaviours to make it negligible but we need to be prepared and everyone has to comply.

Let me do two examples, not specific to viral work. Even just twenty years ago, for some of us laser safety was just removing any reflecting surfaces from your body and the environment (no rings, badges, other jewellery, no wall mirrors in an optics lab etc) and changing your behaviour: never align your eyes with the likely direction of the laser. This meant, for example, that a researcher would mature the instinct of turning the head always away from the optical table when picking something from the floor. Those were the times when accidents would still happen at a certain frequency because good laboratory practises without PPE relies on a person never do a mistake. PPEs should protect us from our mistakes but once you wear protective gear, once you feel shielded from the hazards, behaviour will change back to normal.

Another example is tissue culture. It is a fair amount of years I do not do TC work in person but, sometimes, when I get a coffee at the Hutch canteen and I pay, I pass on top of my mug and my brain signal me not to do it. Under hood, we avoid to pass over open flasks to minimize the risk of contamination (of the cultures). Again, some of us might have worked perfectly aseptically and safely with no PPE in the past.

I DO NOT advise to drop PPEs or risk assessments, do not misunderstand. The only point I want to make is that changes in behaviour such as social distancing and enhanced hand hygiene will be very important, more important than anything else to come back to work safely. We need to be careful in retraining ourselves. Again, without paranoia or panic. Other than doing ridiculous elbow bumps to replace shaking hands, a smile and a greeting will do. Giving way to people to maintain distance in close environments, planning how to move around cramped laboratories, how to reach instrumentation, when and how to clean hands or use PPE, but also very practical and trivial things such as the use of toilets or where and when to have a lunch or a break, how to reach the workplace might be more challenging. Challenging – not impossible, at least in most cases.

I have been very supportive of lockdowns. Among other things, this period is permitting us to exercise social distancing and train on how to handle materials we buy or we get delivered at home. This is valuable time if and only if you are actually using this opportunity to actively prepare for a life with COVID. We all hope that this virus will burn itself out soon. However, at the moment it seems unlikely and therefore the keyword is one: preparedness.

Do not do the mistakes that several people in leadership have done. They were not prepared to manage this pandemic despite they knew it would happen soon or late. They were not prepared to instruct us for timely societal changes. Are they now really prepared for the next phase, i.e. the management of life with SARS-CoV-2 endemic? I hope in more clarity and transparency. However, to be fair, it would have been difficult not to do mistakes.

If you did not do this already, brainstorm with your team and communicate to your managers what you might want to plan. I also advise having clear and shared rules. As safety will be based quite significantly on behavioural changes, conflicts at the workplace are also likely. Although we are all feeling closer to each other and more helpful, there are always the zealots and the neglectful. Those that are worried about anything and those that are worried about nothing. We need to reassure the former and letting them perhaps working only off the lab (whenever possible) if they cannot handle the situation. We should dialogue with the latter to explain we have to abide by a set of shared rules and, if they do not comply, we should get them off the lab. And in any case, help categories at risk and colleagues that might struggle with mental health.

If you did not do this already, it is time to prepare. Not business as usual but with a new norm as soon as the government will permit us to resume work until this virus will be defeated or at least tamed. For the same reason that most of us are staying at home, helping keyworkers to do their job, we’ll soon be called back to work. Not just for ourselves but again for those amazing people who have kept working in difficult situations in the streets, hospitals, care homes, shops. In fact, it is our duty to share the burden of a society that cannot remain on the shoulders of only a fraction of us. However, we shall do this not in irresponsible ways, but with absolute preparedness. This applies to governments and public institutions but it does apply also to each of us.

Coronavirus – getting ready in a lab

I am publishing here the recommendations I circulated to my colleagues, as this might help others to formulate their strategies or me to receive suggestions on how to improve. At the bottom of the post I also share my opinion about the situation, just to explain why we are taking action. Disclosure: I am no expert in this area, therefore I analysed data just to form my own opinion and to organize our work. Please check institutional guidance and reports.

Dear all,

      While we can still hope that no major disruption will occur, it is increasingly likely that the epidemic will not stop any longer. What is concerning, from a logistics point of view, is that this might last for several months as the responses of the public authorities will focus, rightly, in slowing down the epidemics. I would like to invite you to observe some basic rules, but also reflect on issues you might have not considered:

  1. The most important thing is to address the upcoming months with a scientific mind and no panic. Please follow the indications provided by the NHS, WHO, and the University.  While I do not doubt that all of us already wash their hands! Please do so also when you come in from outside, something we might usually not do.
  2. I am happy for you to work from home when you can. Most of you will have to carry out experiments, but I am happy for you to cluster reading and to write in specific days and to work from home. Would you need access to your computers from home, just organize this with IT but the Unit will provide appropriate IT arrangements soon.
  3. Some experiments could be rather expensive. Please let me know when this is happening so we could plan them properly. I would like not to delay important work though, so we might take some risks (on funds not on safety) but we could manage these risks proactively. For example ensuring that very expensive steps are executed in the shortest period of time and with sufficient people being aware of the experiment. For example, we have several commercial and in house developed cell lines that have not been archived yet.
  4. I can foresee two situations where we need to help each other. First, the case where a single individual will self isolate and they need help to store, throw materials, or shut down a microscope. I think Slack will suffice, but we should have also a ‘buddy system’. For example, if I started an experiment on a microscope that would last two days, I can inform someone else who would have the expertise to safely terminate the experiment.
  5. The second case is a bit more extreme but not really unlikely as other university campuses around the world have been closed. The Unit will soon provide specific guidance. Please think about which element would be critical, for example we will have to shut lasers down, air compressors to avoid them running out of oil etc.
  6. Do consider if you travel, even just within the UK, you might get stuck somewhere. Please check the University policies that are updated daily. I will not recommend specific actions related to personal trips, except to comply with public health guidelines and to think about the possible consequences to get stuck at home in one or another town.
  7. There is no indication – at the moment – that we will experience disruption to the supply chain. However, this might happen. Have a thought if we will run out of some consumables in a couple of weeks and perhaps order now.
  8. Also, very important. There are people coming from areas that are quarantined. Unless you are sure they are breaching rules, be supportive and do not make too many jokes. Some people are more sensitive than others.

To conclude, please do not allow the situation to make you anxious or too worried. For the general population, the main issue in not health but arranging life around likely restrictions of movement to permit the NHS to cope with the extra workload. For us, provided we will put first safety of ourselves, colleagues and family, we have opportunity to keep reasonably productive even in this situation simply organizing.

Feel free to propose ideas or to have a chat with me in private if you have any specific concern.

My opinion on the situation and on what is happening

I am growing of the opinion that the Italian situation is happening only earlier than in other European countries, not that is a special situation. Spain, France and Germany might be already on that path (10-14 days of delay compared to others). UK is probably an extra week late, meaning that by the beginning of April, or earlier, we will experience similar disruptions we are observing in Italy (hopefully not). Also, I had a look at mortality rates. Once taken into account the demographic and that in Italy we are experiencing a situation similar to Hubei (health systems overwhelmed) and not to the rest of China (managed containment of the disease), the stats of Italy do not seem odd to me any longer.

At this point, all other European countries will experience the same unless they enact strong preventive measures. To me it seems governments in Europe and USA have preferred to shield economy first rather than people, or they are simply incompetent, to then get caught off-guard and inflicting to the economy the same level of damage they would have got intervening earlier.
We can organize, minimize disruptions and deaths. Not eliminate them but we can do better we are doing. If only politicians would exert leadership, at local and national level, and – of course – people would comply with the indications…

Last word of caution. People might be complacent also thinking they have the best health systems. This is not the issue, the UK system will be as easily overwhelmed as the Italian one. In fact, there are fewer ICU beds in the UK than in most EU countries, including Italy. The point is to slow down the spread of the disease to keep our health system working within certain operational margins.

Bottom line. Am I writing to get your more worried or anxious? NO. The large majority of us will have minor health issues. However, the public health policies that will be necessary to minimize the negative impact on the NHS will cause major disruptions. Therefore, organize not by panic buying, but thinking ahead… how to work, look after family, etc, etc, when restrictions will be imposed.

Last thing. There is a tendency to minimize the situation as people dying is elderly affected by other pathologies. In Germany, it seems that they do not even consider those patients as CoV-related. The large majority of those people could have lived a much longer life, they are not (all) terminal patients. Moreover, with patients piling up in dedicated wards and ICU, everyone risks more because they will not receive adequate treatment, irrespective if they have been infected or not.

So… the apocalypse is not coming, but just the time to work together to get pass this.

Publishing: a business transaction

Until not so long time ago, desk-rejections (the editor decision not to proceed with peer-review of a submitted manuscript) or even rejections of a manuscript after peer-review with very little substance for that decision, could get me angry, at least in private. These emotions can motivate to do better, but most of the time – if we try too hard to get published in very selective journals – they can take a toll.

After speaking to several editors, I tried to focus on the fact that most of us (editors, authors, referees – sometimes the same people wearing different hats) are good and well-motivated people. That did not work. The sense of unfairness outranks that thought.

I tried to not care, and that did not work either. Until…

I believe that the large majority of scientists and editors do their job also for a clear vocation, to advance human knowledge for the benefit of society. For this reason, we often invest a lot more in our jobs that we should, emotionally and time-wise. This is why it might be difficult to have a detached view of what publishing is nowadays. Let’s make an effort together, watching the problem as a scientific one, analyze it, reducing its complexity to its components and mechanisms.

If you have a donkey and you want to sell the donkey, you go to the market. You might first go to a trader who pays very well as they have good contacts with wealthy farmers. However, they may not like your donkey even if you dropped the price. They do not like your donkey, why do you want to sell your donkey to them? Then you go to a different trader, they like your donkey and you settle for a fair price. But if your donkey is very old, you might come back to your farm with your old donkey. Perhaps you need the money and you get frustrated, maybe even angry, but which is the point? Business is business and the trader is simply doing their job.

Wait… what? D-D-D-Donkeys?

When you submit a paper to a journal, you try to initiate a business transaction. The editor is an expert trader, highly invested in their business and committed to maintaining their operations, legitimately, financially sustainable and profitable. The author trades-in two commodities, their manuscript and their reputation, and – additionally – pays a lump of money for the service. In return, the editor provides two commodities, their readership and their reputation, and – additionally – provides editorial services. I will perhaps elaborate in the future on the traded commodities and services, but for now, I keep this post to the bare essential.

The editor-trader first judges the quality of the product you want to trade-in. They are entitled to act discretionally applying their in-depth knowledge of their business to assess if they are about to initiate a potentially good deal. Can your donkey carry weight? Er, I mean, can your paper attract many citations and media coverage? If they do not want to do business with you, it is not a matter of fairness, even not of science, certainly nothing personal. It is the author’s responsibility to make their business pitch, and it is the editor’s responsibility to not lose good assets or not invest in bad ones.

If I read what I have just written ten years ago, I would have recoiled in disgust. Then I expect many scientists being horrified by what I have written and perhaps editors offended. I hope this is not the case, but if it happened, please let me clarify one point.

We (authors and editors) do what we do to advance human knowledge for the benefit of society. Boiling down everything to a mere business transaction feels perhaps bad. However, let’s keep in mind that scientific publishing is business. If it has to be or not, it is the subject of a different post and to the analysis of the nature of the commodities and services we trade.

For now, I just wished to share with you the trick I use to cope with the stress of rejections, particularly desk-rejections. That part of our job is just a business transaction. This thought helps me a bit more than anything else I tried before.

Be kind to people

“I have worked hard for three years and now that I believe I understand the mechanism, the funding is over”. “I am at the third referee round in five different submissions and I am always getting different requests”. “My grant was not funded because of insufficient preliminary results”. “I do not understand why they got a promotion and I am struggling to keep my job with a similar track record”. “I worked days and nights and the panel dismissed me with meaningless questions”. “My friend never recovered from a mental breakdown”. “I have written the proposal for a month and it was rejected with one sentence, on subjective grounds”. “The referees were very positive but the panel was unimpressed”. “I did not get funding but those in the panels did”. “I got bullied but a committee found that nothing was wrong”.

“Yes, I understand you. It is unfair but this is how academia works”

No… it is not me moaning but a collection of whispers, complaints and shouts you can hear in the corridors of Academia. Along with comforting words, the response to a colleague in a temporary moment of discomfort or a prolonged stage of distress are often two. One might be an explanation of what a colleague might have done objectively wrong or how to avoid typical traps in the various stages of academic assessment. The other is just the acknowledgement that at least in many, if not all, cases… well… this is how Academia works and we have to be resilient and keep going*. However, this post is not about complaining but more about the human factor often lost in Academia.

In the last few days, twice I heard or read appeals of ‘being king’ to people in the academic context. Once, in a speech by our Director, Prof. Ashok Venkitaraman, opening our retreat on Friday. His speech did mention academic excellence but it was particularly focused on people as described by our colleague Dr Ben Hall.

His words resonated with most of us as kindness is far too often forgotten in Academia, probably because in very competitive environments, people are supposed to be all so full of themselves and thick-skinned that everything goes. In truth, like in any work environment, the large majority of people treat each other with respect and just a few then spoil it for everyone else.

Just a day later on Saturday, in a private conversation completely unrelated, a friend pointed out that the Teichmann laboratory at the Wellcome Sanger Institute, adopted as a lab motto the words “Be bold. Be brilliant. Be kind.

These two almost trivial observations (from our Director and another successful Academic) made me think. Why do we need to make such appeals for kindness? After two decades of living a life within Universities, my experience of the Academic environment is of a very tolerant, liberal and progressive environment. Of course, there are plenty of issues to be fixed, common to other sections of society, but the general attitude and ethos – in my experience** – was mostly positive. Then why do we eventually feel the need to appeal to kindness?

My opinion is that the obsession for ‘independent’ academic assessment and competition is in part selecting for certain characters. Being ruthless and selfish helps in any competitive environment, as it increases the likelihood to seize resources. However, I do not think this is just the issue. Most academic assessment is either performed anonymously or by panels that often have no knowledge of the person they have to judge. Various forms of peer-review (either for publishing or funding) are designed to be objective and independent. While peer-review is the best system I can also think of, its issue is that – eventually – it is not objective and it is not independent but in trying to be, it loses any human touch. Even when interviews are at the core of assessment, these are brief (5-20mins) and very focused, in any case preceded by anonymous reviews. The lack of human connection and two-way personal dialogue, I think, dehumanize the process of assessment and triggers ‘unkind’ behaviours. The problem, perhaps, we focus too much on projects and not enough on people.

I might be still naive, but in my opinion, the most important resource in any work environment, and also in Academia, is people. Recently, we prepared a leaflet for outreach with the motto “Our superpower is you”, meaning that science main resource is one: people. Unfortunately, the structure of academic assessment and a highly tapered career pyramid with huge turn-overs at its base, create rent-seeking behaviours and an environment that can be harsh in general, or at least in key moments of one’s career. We should think about people investing in people for the benefit of people, not just in projects.

I know that this is perhaps a tiny bit too idealistic and any type of assessment has flows. Probably, we cannot really solve this problem, maybe it is not a problem in itself. But I would like to leave you, my friend, with a provocation. I dare you not just being kind (if you read until here you might agree with the general concept) but challenge everyone that is not, be kind when you review a paper or a grant, particularly when you have strong criticisms to share. If you are an Editor, the head of a panel, academic or not, I dare you challenging unkind behaviour and disqualifying any critique that is not delivered with respect. I dare you all speaking publicly about the need to be excellent in science, but also in our humanity. Because if we wait longer for a top-down change, even though many at the top are wonderful people agreeing with the ‘be kind’ concept, we will keep losing our human capital. I dare you last, to use this or any other badge of your choice in your website or public communication. The large majority of people is good people, in any environment, we just need to remind everyone that it is not acceptable to be otherwise:

* to avoid misunderstandings, I should clarify that I might also respond in this way, it is not a criticism on trying to be helpful explaining how the system might work.
** VERY IMPORTANT TO ME, this is my own experience. I am fully aware of other very different experiences, and structural problems. Here I am speaking about a general attitude and – as I am committed in Equality Diversity and Inclusiveness in Academia, I am fully aware that there are plenty of problems to be solved. I do not want that this specific statement about Academia being generally a liberal and progressive environment (which is what I think) will be misunderstood as if Academia is perfect, indeed my post would suggest otherwise.

Passion, Silos and Friction: a personal account of free roaming between disciplines

There are grants, there are great words written, there seems to be strong support, but how working between disciplines really work? Let me tell you at least how this has worked for me. This is a long read, but if you do not wish to go at the bottom of it, my advice (sadly) is the advice I once received and did not follow (with no regrets): consolidate your career in one discipline/department/subject (silo?), then you will be free to roam between disciplines at a later stage.

Does science work in silos? (picture from, CC BY-SA 3.0)

A very early choice to work across discipline* | As a young boy, alongside sports, I picked-up electronics and computers as hobbies leading me to select scientific studies at high school. I then matured a keen interest in physics and biology. When the time came to decide which courses to follow at University, I  wanted to combine these interests, applying Physics to understand Life. However, I was undecided if to pursue this growing passion through studies in medicine, engineering, physics or biology. In a very uncharacteristic move for me, as a shy youngster from a family of non-academics and from a town without a university, I found myself sneaking into the Department of Physics at the not-too-far University of Genoa asking to speak with a scientist to get advice. I still remember that a Dr Rossi at the CNR in Genoa explained to me how I could approach my interest following different paths. While I never met again Dr Rossi and I do not recall the details of my visit, on that day and after speaking with him,  I decided to study Physics and to become a researcher in biophysics.

Here I got into the first silo | Genoa was an excellent place where to study biophysics as it was one of the towns where biophysics started in Italy and it had a mature and vibrant biophysical community. However, I got an early warning about what meant to work across disciplines. Having opted for Physics, I first had to become a proper physicist, well-grounded in mathematics and theoretical physics. As I generally did well at high school with not too much studying, investing most of my spare time in tinkering with computers, electronics and doing athletics, University was a shock. With no tutoring and no advice (today things have changed), the first two years at University were brutal for me, incapable to cope with the workload and seeing around me, not only friends that were doing well but many who were dropping out (I believe we had a 50% drop-out). Until one day, seating on the floor of the library at Physics… studying maths from a book grabbed from the shelves… breathing pages of old books… when I finally got it. I found my way to study maths, my way to study 24/7. After that mountain was climbed, I picked the few – very formative – courses related to biophysics I could and I finally completed my studies. Although University could have been simpler for me with the tutoring and help that nowadays are available,  I am grateful that I was forced to have a very strong theoretical background – no compromise allowed – and I am happy for that first choice of doing Physics at Genoa. However, the first warning was there, unnoticed at the time. To study Life with the tools of Physics, I had studied quantum mechanics, advanced mathematics, particle physics, but I had not a single course in biology or biochemistry. This, despite the fact that what you would nowadays call my master thesis was a year-long experimental work in neurosciences. The fact that I was doing biophysics in a very interdisciplinary environment,  partially concealed the fact that science (still) works in silos.

Training at the interface | My choice for a PhD was a bit more random. At the time, I knew I wanted to work with proteins (very vaguely) and I had strong training in fluorescence microscopy. While the search for a laboratory where to do a PhD should be done differently, once again without guidance except for Altavista and Lycos (read as ‘Google’ back then) I identified the first batch of laboratories working with proteins and optics. As my first initial and unplanned search landed me immediate job offers, I was attracted by a very charismatic scientist, Prof. Fred Wouters at the  European Neuroscience Institute in Goettingen. My duty was to develop biochemical imaging tools (FRET/FLIM) to study protein-protein interactions relevant to neurodegeneration. At the same time, I enrolled at the University of Utrecht, under the supervision of Prof. Hans Gerritsen, with whom I later obtained my PhD in Physics. Thanks to my struggles at Genoa, I was able to fly, build microscopes, write theory, apply imaging tools to solve biological problems and I completed a successful and productive PhD, by the end of which I was able to do tissue culture and molecular biology as well. Finishing up, on a long train journey to visit my partner who was working in Bonn (also a scientist), I asked myself what I wanted to do and the answer, since then unchanged, became clear: study how cells process information to take decisions by advancing microscopy tools dedicated to the study of biochemical pathways. At that moment, I committed to work at the interface and to do both physics and biology.

Swapping disciplines and subjects, the untold dangers | The move for my first real post-doctoral experience was once again insufficiently planned career-wise. At the time, I started to be introduced at talks or in conversations as “one of the top experts in FRET” or “one of the few scientists who can handle biology and physics equally well”. Young experts working across disciplines, particularly with a background in physics and – I suppose today – in Mathematics and Computing, do not have problems to find a job at the post-doctoral level. I sent two applications, got two job offers, opted for the one in Cambridge as my wife wished to apply to a lab there. The science (despite not my focus that was still neuroscience) and the environment were very interesting. My work was the attempt to falsify a homeostatic model of red blood cell infected by P. falciparum (the pathogen causing malaria).  Once again I was working between disciplines, affiliated to the Dept. of Chemical Engineering and Biotechnology supervised by Prof. Clemens Kaminski and to the Dept. of Physiology, Development and Neurosciences supervised by Dr Virgilio Lew. Once again, grateful for the training received in Genoa, I flew and I had a very successful and productive post-doctoral experience with my colleagues. However, I started to notice a few more issues.

First, despite the interest and the success, the move to malaria research was not strategic for my final goal and had potentially weakened my profile in the neurosciences. Second, the more senior you become, the more politics counts to seize a position, and without the shelter of a chosen silo (either physics or biology), one might be a bit more at risk. I looked after the former issue seizing an EPSRC Life Science Interface fellowship that I wrote to develop biophotonics tools to investigate the physiological role and interaction of some proteins involved in neurodegeneration.

An unexpected and exciting switch to cancer research | A few months into the fellowship, I was offered to move my fellowship at the MRC Cancer Unit (back then known as the MRC Cancer Cell Unit) where I became, in all effects, a staff scientist. The request was clear, refocus my work to cancer research. EPSRC agreed, and I welcomed the requests as this was strategic to achieve exactly what I planned a few years before, i.e. to study cell decisions by advancing biochemical imaging technologies. My third change of disease model, this time cancer or, more specifically, early oncogenesis, was both very good and bad for me. Very good, scientifically, as it permitted me to align perfectly my scientific ambitions to a disease model where it made perfect sense (cell decisions in cancer are very important and relevant to study). Bad, career-wise, as I once again changed subject therefore further weakening my profile. However, the offer seemed good also in terms of career progression and therefore I accepted. For the third time in a row, my fellowship was a success and productive, achieving my set goals which were, however, more related to advancing technologies while I was getting retrained in cancer biology.

The paradox of the praise of inter-disciplinary research and the silos-like organization of academia | Science works in silos, it still does. These silos communicate, exchange expertise, and they do contribute to beautiful cross-disciplinary work but they are still silos, particularly career-wise. This more or less strongly compartmentalized operation is reflected in the difficulties to review grants, papers, career progression of interdisciplinary work or people at the interface, as discussed in the many articles published on this topic. For now, let me just report a couple of specific events that describes one aspect of the problem.

One day I was at a funding workshop during which several colleagues delivered talks about inter-disciplinary science. One stated that there are excellent people who can do both biology and physics, referring to them as ‘hybrids’. He expressed his support for these hybrids and stated that, as they are rare, we have to fund collaboration between departments. After this comment – delivered by a scientist I have a lot of respect for – I was simply feeling great. Then other speakers clarified how they do not believe in individuals working interdisciplinary but they expressed the need to just collaborate across departments. This – of course – was quite a shock for me. So accustomed to read and hear praises for interdisciplinary work and striving at the interface despite the occasional hic-up and emerging ‘career frictions’, the pieces of the puzzle came together after that event.

The large majority of the Universities, as far as I can tell, are still organized in mono-disciplinary Departments. Even when individual Departments or Institutes are very inter-disciplinary, with biologists, clinicians, chemists, physicists, engineers, computer scientists and mathematicians working shoulder-to-shoulder, you should ask how much disciplinary diversity exists amongst the principal investigators, particularly the tenured academics. If the spread of disciplines suddenly shrinks to a few very related backgrounds, you would have a clearer picture of how interdisciplinary work is rewarded.

This is summarized by a comment I once heard at a conference. After a number of talks about magnetic resonance imaging at the university hospital, and the praise of mathematicians (PhDs and post-docs) who contributed so much to the progress, one person from the audience popped the magic question: “which career perspective do you offer to these young mathematicians without whom this progress could not have been achieved?”. The response was delivered bluntly, honestly and respectfully: “None. We do not have possibilities for career advancement for mathematicians but most of our PhDs and post-docs after working with us do well in industry”.

I am absolutely sure there are plenty of exceptions to what I am describing. However, I do not think I would be too wrong to warn you, perhaps a younger-me, of the risks in leaving the shelter provided by a well-established silo, at least from a career perspective. A silo where career structures might be clearer and career progression might be still very difficult but more ‘natural’.

Am I in the wrong silo? |  The last chapter of my story (for the time being) is still writing itself. More importantly for those two of you young readers landing on this page, I should clarify that it is a story were many plots get entangled. I wished to answer questions such as “how was your experience working at the interface of life and physical sciences?” or “how was for you swapping between different disciplines”. However, the longer you stay in academia, other issues arise such as reaching job security, finding a good balance between family and work, maintaining/finding/expanding resources (people, funds, space, instrumentation,…), supervising/mentoring people, finding a balance between research and other academic duties, etcetera. These and other important aspects of our work are common to any scientist, irrespective of how many disciplines or subjects they touch. However, working at the interface between disciplines adds – in my opinion – a little bit of friction to most of these processes.

I am doing biomedical research in a cancer research institute, I love it and I enjoy working with my colleagues. However, I am a biophysicist with a strong track record in biophotonics, not much track record in cancer biology. After the successful completion of my EPSRC fellowship, I was expecting to get into a tenure track position with dedicated resources. However, the new (however obvious it might appear writing it down now) condition I had to confront was to have a track record in cancer research possibly with high impact factor journals. Retreat to the ‘shelter’ of Physics departments or competing on this new ground of biomedical research on the game (that I do not even like nor endorse***) of impact factors? While the choice should be obvious, I personally focused only on the scientific ambitions, trying to establish what I like to call a “single-cell systems biology of cellular decisions” and I opted, somehow reluctantly, to play the game. I am sure that others would have handled the situation better. Personally, I enslaved all my physics/engineering/mathematics to the solution of biological questions and stopped publishing specialist work. At the same time, caving-in to peer pressure, I focused on preparing manuscripts that, potentially, might be published in high impact factor journals entering a very long cycle of ‘stashing’ data seeking to have the most solid work and the most interesting narrative (I shiver spelling it out, and I corrected this by using pre-print servers and resuming publishing specialist work).

Not only the work I excel into is invisible to most biomedical colleagues, erroneously tagging it ‘just technology or methodological’. I mistakenly reinforced this trend by starting to bury a large part of my work in the supporting information of would-be high impact-factor journal papers. Somehow, the need to fit in my environment, the expectation of peers in cancer biology, referees and panels, made me behave as if I should be ashamed of the work I am actually best known for. The issue is not my institution, certainly not the very supportive colleagues. Perhaps I am simply in the wrong silo in an academic environment that works as communicating silos. By now, however, I would be in the wrong silo in most academic silos and I shall continue attempting to prove there is a reason to have some ‘hybrids’ working at the interface between disciplines.

A war of attritions |  I shall conclude with a comment on something I believe is important for anyone that is ‘different’ in an academic environment, something I will expand upon in the future in a different context. In any very competitive environment, and Academia as I know it is highly competitive, the best might emerge. However, people of the same quality will experience different frictions. For example, even in the absence of outright discrimination, gender, ethnicity, nationality, religion, physical ability or even regional accent might each result in additional friction while climbing up in career depending on the environment**.  Working at the interface between disciplines, or swapping discipline, will help to make you unique but, at the same time, it might add significant friction to your walk through Academia. While I have no regrets and I love – as a physicist – working on cancer biology in a biomedical research campus, I wished to warn those scientists willing to do the same of the possible hidden risks. Of course, this is just my story, but there is plenty of research out there showing how difficult is to work across disciplines for both individuals and teams.

You will love breaking free from the cages of disciplines. You will feel strained by the absence of a safe shelter.

So, perhaps, the solution is one I was advised a decade ago, the advice I neglected as I assumed was given for self-interest. You might want to first establish yourself within a single discipline, be either physics or biology for example. Once you will have a well-established career, you will be able to use resources across disciplines.

That was not for me, I am a ‘hybrid’ after all.



* Be aware that in this blog-post I use various terms to refer to working across disciplines (inter, cross, multi, etcetera) I do this in a very colloquial way.

** I do not intend to compare the issue of inter-disciplinary research to the struggle of asserting civil rights! My point here is simply that in the absence of outright discrimination (for those environments where this might be applicable) unconscious bias might remain thus adding some friction to the career of people. Bias against multi-disciplinary research is well-characterized in the literature and, I argue, this bias is yet another friction that adds on to the normal challenges in academic progression.

*** I should clarify that I do not have anything against high impact factor journals. They are a business and they do it well. Moreover, they often provide great editorial input and production assistance. However, I am critical on the use of such journals in Academia that, in practice and in many cases, slows down the discovery process. | cattle walks to the slaughterhouse happy

CH_cow_2_cropped CC BY-SA 3.0

Although I am no expert in livestock production and food chains, I do recall debates on making abattoirs more humane by ensuring that animals are not aware of their fate. In other words, the poor bovine should not see other fellow animals being slaughtered fearing for their lives in a long and slow-progressing queue towards death. Fair enough.


While travelling to London for a networking event, I was messaging over Slack with a friend, a former PhD student, and casually chatting about a number of things. At his question: ‘how things are going’, I instinctively responded along the line of ‘well, although growing tired of the slaughterhouse that is academia…’. Although I love Academia, I have been also openly critical about it over the years. However, I never defined certain processes of Academia as a ‘slaughterhouse’ before. At the same time, the definition fits so well.


When I was a PhD student, I thought that for those students like me, doing anything else than staying in Academia was a failure. Bovine-me was roaming the green fields of Germany and The Netherlands happily fattening (quite literally in my case). A constant flow of fellow students would join us in ever greener pastures, cohort after cohort, and many others leaving for higher hills never coming back, with a few – barely visible at a distance – growing older at one of the most remote fields. Bovine-friends say, fields where the grass is the sweetest.

When the time came, and the gates opened, we rushed to the next wonderful field. Who did not rush, was simply pushed by the flow of the pack. Despite the dynamic crowdedness of lower fields, bovine-us kept decreasing in number happily walking towards the gates opening towards those greener and sweeter pastures we always fantasized about.

Most of us, fat and strong, perfect bovines, queued for the next gate, happily walking to an even better field, one-by-one, blissfully unaware, a pop, the last memory. Others are still grazing.


Academia depends on the constant flow of students through their classes, and many Universities, no doubt about those I know, do a wonderful job in training them. So many committed people that are dedicated to passing and expanding knowledge down the generations. Academic research depends on a rather large cohort of PhD students and post-doctoral scientists working hard, often paid modestly considering the years of unpaid (or worst debt-causing) training lured into the next job by promises of stability but kept in an unforgiving precariat state. Short-term contracts after short-term contract in a job where long-term vision should be key, we are subject to a constant process of review that in the best case is rigorous and tough, but that can be often also quite random and biased.

This process is largely physiological as the academic system is very competitive. Many collogues also express no concerns about it on the basis that selection has to occur, in a way or another. However, the impact on the mental health of academic workers is now evident, and not just only on students. I believe that a more efficient and fair system would be one that promotes leaving academia early as an active choice, where different career options are promoted, where there is clarity about the likelihood of promotions, and where there is no choice to be made between having a family and having a job.

Just to clarify the last point, once I was in a leadership course. A colleague asked “My husband has a tenured position at Cambridge University and we have a child. I am offered a tenured position elsewhere and I see no opportunity at Cambridge, what should I do?” The reply was: “I guess you have to make a choice between family and career”. As horrible as an answer it was, I should also clarify for those that are not aware of it that for who works in Academia this is not a choice, as if you do not progress on the ladder of academic positions, it is likely one day the gate of will open for you – pop.

I hope one day, would I survive or strive in the system, I will have the tools to influence it and change it for the better. For now, I can just write about it, hoping that younger scientists will make more informed decisions than me and most of my colleagues. ■

This is what happens when you attend Focus on Microscopy for a few years…

Most of the times, I write this blog for those two youngsters that might learn something by accidentally landing here. I wished to share with you a few things that might happen when you age, at least academically speaking. This is what happens when you attend FoM for a few years…


I have met my PhD supervisor, Hans Gerritsen, a scientist and a man I greatly respect. Lost in memory lane, I have (re)told the story of when – while working in Goettingen with Fred Wouters – I wished to update Hans with a report on my latest theoretical developments.

Right click…

Create folder…

“this destination already contains a folder named ‘saturation FRET’ “

Well, I had discovered I had already written several tens of pages of maths for Hans, for then completely forgetting about it!!!

Which is the point? Well, I do have a horrible memory! I always had.


When you get older you get many stories to tell and I like to tell stories having a laugh. When I meet people I got to know in the past and that have longer experience than me, I like to ask more historical accounts of the early times of, for instance, FLIM developments. Not a long time ago, I had a wonderfully entertaining and instructive conversation with Peter So and Ammasi Periasamy walking in the historical streets of Venice after lecturing at an international school of microscopy organized by Alberto Diaspro. Lots of fun, for me at least, speaking about the various characters of the field, anecdotes,  reconstructing the ‘genealogy’ of the various innovators (how they are scientifically related to each other). And I could not resist asking the question: “who did the first FLIM image”? I suggest, Wang et al 1989, but I am uncertain as I was 14 back then 🙂

Did I tell you I have a bad memory? Well, I did not lose the opportunity to re-ask to Hans, when I met him at FoM, “who did the first FLIM image”? Possibly, Chris Morgan.

While ‘googling’ Chris Morgan I found my own paper on Lifetime Moments Analysis (LiMA), as I cited his work. Well, DID I TELL YOU I HAVE A BAD MEMORY?

I also ‘discovered’ I did write a brief paragraph as a historical introduction about FLIM, and I had a flash-back of me asking Hans in 2005 the same question, which probably places Bugiel, Konig and Wabnitz as the winners in 1989. But let me know if you really know who published the first FLIM paper 🙂


Here we are, a very new thing I have just noticed about what happens when you age academically. Presumably, the first FLIM paper was published in 1989, with work on FLIM proliferating during the first half of the 90s. My first paper on FLIM is the LiMA work of 2005 published in Biophysical Journal, ‘only’ 16 years after the first FLIM paper. Yesterday, my latest contribution to the field just got accepted on Biophysical Journal, 14 years later. Although I do not work full-time on it, I have contributed to the development of FLIM, in one way or another, for almost half of the time that FLIM exists. This gives me a rather strange feeling.

It is very instructive, in my opinion, for students and even for a tiny bit older ‘students’ like me to pause for a moment and look to the past of their discipline or the technologies they use. Compared to Physics, for instance, cell biology, biophysics, cancer biology are all rather recent disciplines. Fluorescent proteins are on the map since the sixties, but usable only since mid-90s not so long time ago for instance. Imagine what we might be able to do in another 20 years.


FoM is an occasion to meet many people, peek in the future through the talks of fellow scientists and discussions, watch back to past memories. Yesterday I barely walked three lines of posters in 2 hours, as I was getting engaged in interesting conversations every few meters with people I just met or people that I know, in a way or another, since many years. When I called back my wife, Suzan, in the evening, she reminded me of my first FoM in Australia, when I called her saying I was feeling a bit lonely and awkward as I did not know anyone.

Conferences like FoM are community, history, a boiling pot of ideas. I have been always a bit shy, and my suggestion to younger scientists is to make an effort not to be. Engage the others. Working in academia can be rather frustrating at times, and feeling part of a community can really help you in the future.


Fourteen years from FLIM paper to FLIM paper in Biophysical Journal. When not affected by an attack of imposture syndrome, I look back and I feel good in seeing what I have done so far. However, there is yet another thing I discovered when you age academically. The legacy one person builds is not papers. In part is the reverberation of your work in those of others, irrespective of explicit citations. In part is the comments of colleagues who tell you, even just privately,  when they got inspired by something you said, presented or published. But, growing a tiny bit older every year with FoM, it is also the younger generations coming to speak to you.

And, I would like to thank you all, because while impact factors, panels, research outcomes are the fog in which someone might lose themselves a bit too often, you are the light at the horizon signalling we are, after all, walking the right direction.

Moral hazard in academic governance (the University of Bath, emerging protests and leading changes in society)

Moral hazard

Over the last decades we have seen everything about the good and the bad of free market economy; we have learnt a lot about the consequences of moral hazard. Moral hazard is the tendency for one person to engage in riskier behaviour when the consequences of this behaviour will be dealt by others. One example might be an insured shop owner, struggling, who will not have any incentive in investing in a new fire system as, after all, a fire would permit them to collect the premium of the insurance. The insurer does not have complete information on the behaviour of the insured or their intentions, therefore will incur a higher risk than the risk of fire in itself. However, this typical example does not adequately illustrate when moral hazard occurs at the level of management.

The 2006/7 financial crisis was an astounding example of moral hazard, where many groups of people accepted higher risk they should have done (banking management, intermediaries and the recipients of sub-prime mortgages). Let’s focus for a moment on the management within financial institutions as it is a more appropriate example of what I will have to say. Before the financial crisis unfolded, executives were either aware of the problem, and they defrauded millions of people, or they were not, they were just incompetent. Were they deserving their jobs and the substantial compensation schemes they had and still are receiving? Is the market setting this compensation packages? I will come back to this point later. Either way, the initial response of Governments was difficult: bailing-out private institutions, reinforcing the possibility for moral hazard to incur in the future, or let the system fall in an uncontrolled manner? Considering the situation, most Governments decided for supporting financial institutions, therefore reaffirming that management of financial institutions may have operated under moral hazard: as the fall-out of their riskier behaviour was, in very large part, handled by States, Governments and the People.

But this blog-post is not about the financial crisis.

The University of Bath ‘affair’

Over the last few weeks, national news in the UK reported on protests of employees and students at the University of Bath on regard of the high salary earned by Dame Prof Glynis Breakwell, their Vice-Chancellor (~£468,000 and benefits). Reports were initially accurate, but they got occasionally derailed by attempts from various academics to defend high salaries for academic governance in general or Prof Breakwell specifically. Let’s clarify immediately, I do not have an opinion about how much a Vice Chancellor should be paid. Half a million may be the right number, or it may be too low or too high, I just do not know enough. But a few things bothered me in this debate: responsibility, accountability, and gender equality.

The market sets compensation schemes, does it?

I have read the commentary written by Prof. David Blanchflower and published by The Guardian, entitled “University vice-chancellors deserve more pay, not less. Here’s why”. The reasons for high salaries described in this article are clear and even agreeable at first instance. Universities have to hire their governance in a global market with competitive salaries. I have nothing to debate about this truth, but I am afraid there is another truth, not too hidden, that went unnoticed here. The protests were not a generic complaint about the high salary of academic leadership, it was a specific complaint about an almost 4% salary increase for the highest paid Vice-Chancellor. Allegedly, compensation for the governance at the University of Bath was established with insufficient transparency, with an undeclared conflict of interests and a motion from the Court of the University was hindered by those that should have left the room during a vote because of conflict of interests. This is not my opinion, but the informed and competent judgment (I suppose) of HEFCE, the Higher Education Funding Council for England. If you are interested in this story, please read their report.

Is moral hazard or the market that set salaries?

I am no economist, but my naïve opinion is that this is a typical case of moral hazard in management. As discussed, moral hazard takes many shapes and forms, but it has been identified as a dominant reason for the uncontrollably increasing compensations for executives in Industry. It is true that Academia recruits on a global market, but Academia must shape the global market both training adequately future executives and leading by example.

There is a debate, until now unrelated to Academic governance as far as I know, about the compensation of executives that appears to have become untenable, influenced by executives themselves, paying marginal consequences when their actions damage the brand they represent.

Let’s say you have the right not just to ask a pay rise, but to vote in favour or against. Let’s say that you give yourself a million pounds per year, irrespective of outcomes, in addition to a complex package of benefits that may depend on the performance of your company. After one year of work, your company goes bust and you have lost the value of your shares and options. However, you have just earned 1 million in 1 year, that is an amount of money that corresponds to 37 years of median salary. So, corporate executives raise their pays (not all of them!), constantly, to capitalise on short-term investments, possibly (even unintentionally) misjudging the consequences of their decisions as their livelihood, and those of their families, contrary to the vast majority of people, do not really depends on their productivity. This is moral hazard.

Executives are entitled to ask for an increase of income, but the procedures for these extraordinary compensation packages (from the point of view of people paid ‘normal’ wages or unemployed) shall be transparent and not just justifiable but justified.

I do not believe that this is a common issue at Universities, but how the story unfolded at the University of Bath resemble one of these cases. Let me do an example.

Dame Prof Breakwell is paid a high salary because she has to look after public relationships and take important executive decisions for a large business and an important brand. True. Complaints about the pay rise should have been expected, so a high degree of scrutiny. The Council voted down a motion of the Court requesting more transparency. In authorising the pay rise in a period of protests about wages and trying to quench the formal protest at the University Council, some (let’s be clear not all) academics accepted the risk. This was a misjudgement, and now the University brand will pay the consequences. At the time I write, Dame Prof Breakwell will retire, after six months paid sabbatical and with a written-off loan: isn’t this moral hazard?

Are Vice Chancellors paid too much?

It is not that Vice Chancellors are paid a too high salary, but the problem is transparency, respect of the opinions of your employees and ‘customers’ (the students I suppose), respect for the brand one represents and, a better understanding of societal changes. I hope that other Vice-Chancellors will be proactive, not in cutting down their incomes (this is a different matter), but in understanding and shaping societal changes.

Universities have the moral duty to shape society not to be just the mirror of it. What some people might not appreciate is that the uncontrolled rise in executives compensation (in Industry) is causing damage to business three folds: by draining resources from investment to disproportionate personal wealth, by inducing short-sighted selfish behaviour with no incentive for long-term investment in assets and people, and bad publicity to industry creating a sense of complete disconnect, distrust and unethical behaviour that damage the brands they should promote. The latter point is often neglected, but it is very important. A chancing society and pressure groups, if neglected, can cause a lot of damage to a ‘brand’. This is not in Academia but in the world of Finance and Big Industries. Are we walking the same path now? Most people will say no, as compensation packages for academic governance are far from the excesses of USA corporations (true), but as I tried to say a few times by now, the issue is not necessarily the pay level, but the process and incentives in place.

Fully justify high salaries and adopt transparent decision processes, but also do not disregard the growing intolerance for inequality. Do not speak, in an abstract manner about the market, be specific. Moral hazard is part of the market, it is an unfruitful degeneration of it, which goes against the principles of free market economy. Most Academics and University employees dedicate their lives to improve society. Sometimes we are wrong, other times ineffective, but most of us, Vice-Chancellors included, are well-intentioned and passionate to make of the future UK, a competitive global and fair Nation. Therefore, do not let greed, or simply lack of due process, to damage our brand and collective efforts.

Was gender an issue?

There is another ‘inequality’ that bothers me: gender inequality. The top-level academic world is dominated by man. I am a white nearly middle-aged man, with the ambition to become a ‘fully-fledged’ academic. However, I cannot avoid noticing that women representation among academics is still low and it pains me that to get in the line-of-fire was a successful woman. I do not know statistics about Vice-Chancellors and gender-balance, but I did check the Russel Group. I count six female Vice-Chancellors and seventeen males, ~25% female representation, a figure we are too often familiar with. I am sure that all Universities are committed to improving, we feel very strongly about this at the University of Cambridge, but the historical heritage of male-dominated academia take a while to change.

The Guardian published another letter in support of Prof. Bakewell, this time signed by several female academics of the University of Bath, which start with “Being a successful woman seems to attract a disproportionate degree of negative criticism”. I am sure that this is true, but I should clarify that gender, for me, did not matter, and also for the articles and material I had the opportunity to read. The highest paid Vice-Chancellor in the UK was, by chance, a woman. HEFCE criticised procedures that were opaque, behaviours trenched in conflict of interest. When a woman raises at a position of power is, first and most importantly, laudable because being one of the best in their area irrespective of gender. Second, a woman in a position of power in a male-dominated environment is also laudable because of the many obstacles that women still experience in career progression, particularly at the top of the scale. However, people of power should accept the increased scrutiny and the responsibilities that come with the higher salaries they are paid, irrespective of gender and background.

Leadership for the future

My hope for the future is to see inequalities of all types to diminish and eventually disappear. I hope to see more women in academic governance. Irrespective of gender, I wish our leadership will keep fighting to improve the society we live in, fight against the profound inequalities we experience even in the United Kingdom, be this income or gender inequalities. I wished we trained the economists, the bankers and the lawyers that will reach the apex of various Industries to lead change. Because the only way we can defend a free market economy is to ensure that the right checks and balances are in place, monopolies are not created, packets of extraordinary wealth (corporate or individual) do not exist (otherwise they distort the dynamics of competition as much as a monopoly).

Let’s never say “it is the market that decides” because it is always people that decide, and it is ok if we follow due process.