A ‘hyper-dimensional radio’ to listen to the biochemical communications of the cell

hdim_resIndustry, academia and healthcare often rely on fluorescence microscopy to see the fine architecture of materials, including biological ones. Fluorescence microscopy is particularly suited for biomedical studies because it can be gentle with biological materials permitting investigators to study biology in a non-destructive manner. Chemistry and genetic engineering then provide useful strategies to make samples fluorescent so to report about mechanisms that we need to study aiming to understand how biological systems work in normal conditions, during disease or therapy.

Thanks to two-decades of fast-paced innovation in fluorescence microscopy, we can now see the smallest features of a biological sample, approaching molecular resolution. However, the capability of fluorescence microscopy to observe small changes in the chemical or physical properties of biological samples is not as well-optimised as its capability to peek into small structures. In our recent paper entitled “Enhancing biochemical resolution by hyper-dimensional imaging microscopy” – now available at the Biophysical Journal – we demonstrate how to recover information that permits us to make better measurements.

We can think of a fluorescence microscope like a radio broadcaster that transmits useful information through different radio channels. When we listen to one individual radio channel, we lose information transmitted over the other frequencies. If we attempt to listen to several broadcasts at the same time, the scrambled voices will limit our understanding of the several messages that were originally broadcasted. Similarly, the lasers we use to make samples shine, and the fluorescence emitted by samples, transmit information spread over the different properties of light, for example in its colour, in the time when light is emitted (the fluorescence lifetime) and in which plane is vibrating (polarisation).

In our recent work, we describe theoretically and experimentally how all this information could be measured separately but simultaneously enhancing our capabilities to observe biological processes. By breaking conceptual barriers and showcasing possible technological implementations with hyper-dimensional imaging microscopy, we aim to catalyse advances in several applications, spanning material sciences, industrial applications, basic and applied biomedical research, and improved sensing capabilities for medical diagnostics.

The New&Notable commentary by Prof. Suhling on Biophysical Journal

Our open-access work on Biophysical Journal